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FUNDAMENTALS and DESIGN 
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Harry J. Toups LSU Department of Chemical Engineering with significant 
material from SACHE 2003 Workshop presentation by Ray French 
(ExxonMobil)
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The Fire Triangle
! Fuels:

– Liquids
! gasoline, acetone, 

ether, pentane
– Solids

! plastics, wood dust, 
fibers, metal 
particles

– Gases
! acetylene, propane, 

carbon monoxide, 
hydrogen
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! Oxidizers
– Liquids
– Gases

! Oxygen, 
fluorine, chlorine

! hydrogen 
peroxide, nitric 
acid, perchloric 
acid

– Solids
! Metal peroxides, 

ammonium 
nitrate ! Ignition sources

! Sparks, flames, static 
electricity, heat

IGNITION SOURCE
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! Flash Point
– Lowest temperature at which a flammable 

liquid gives off enough vapor to form an 
ignitable mixture with air

! Flammable Liquids (NFPA)
– Liquids with a flash point < 100°F

! Combustible Liquids (NFPA)
– Liquids with a flash point ³ 100°F

Liquid Fuels – Definitions
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! Flammable / Explosive Limits
– Range of composition of material in air 

which will burn
"UFL – Upper Flammable Limit
"LFL – Lower Flammable Limit
"HEL – Higher Explosive Limit
"LEL – Lower Explosive Limit

Vapor Mixtures – Definitions

SAME
SAME

! Measuring These Limits for Vapor-Air Mixtures
– Known concentrations are placed in a closed 

vessel apparatus and then ignition is attempted
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Flammability Relationships
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Flash Point From Vapor 
Pressure
! Most materials start to burn at 50% stoichiometric
! For heptane:

– C7H16 + 11 O2 = 7 CO2 + 8 H2O
– Air = 11/ 0.21 = 52.38 moles air /mole of 

C7H16 at stoichiometric conditions
– At 50% stoichiometric, C7H16 vol. % @ 0.9%

– Experimental is 1.1%
– For 1 vol. %, vapor pressure is 1 kPa  

temperature = 23o F
– Experimental flash point temperature = 25o F
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Flammability 
Diagram

1 Atmosphere
25°C
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MIXTURES HEL
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Concentration:
Vol. % O2 below 
which combustion 
can’t occur
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Flammable Limits Change 
With:

Inerts

Temperature

Pressure
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Effect of Temperature on
Lower Limits of Flammability
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Effect of Pressure of 
Flammability

Initial Pressure, Atm.
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Minimum Ignition Energy

! Lowest amount of energy required 
for ignition
– Major variable

– Dependent on:
"Temperature
"% of combustible in combustant
"Type of compound
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Minimum Ignition Energy

Effects of Stoichiometry
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Autoignition Temperature
! Temperature at which the vapor ignites 

spontaneously from the energy of the 
environment

! Function of:
– Concentration of the vapor
– Material in contact
– Size of the containment
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Flammability Relationships
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Material Variation Autoignition
Temperature

Pentane in air 1.50%
3.75%
7.65%

1018 °F
936 °F
889 °F

Benzene Iron flask
Quartz flask

1252 °F
1060 °F

Carbon disulfide 200 ml flask
1000 ml flask

10000 ml flask

248 °F
230 °F
205 °F

Autoignition Temperature
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Autoignition Temperature



18/61

! The process of slow oxidation with accompanying 
evolution of heat, sometimes leading to autoignition if 
the energy is not removed from the system

! Liquids with relatively low volatility are particularly 
susceptible to this problem

! Liquids with high volatility are less susceptible to 
autoignition because they self-cool as a result of 
evaporation

! Known as spontaneous combustion when a fire 
results; e.g., oily rags in warm rooms; land fill fires

Auto-Oxidation
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! Fuel and air will ignite if the vapors are 
compressed to an adiabatic temperature 
that exceeds the autoignition temperature

! Adiabatic Compression Ignition (ACI)

! Diesel engines operate on this principle; 
pre-ignition knocking in gasoline engines

! E.g., flammable vapors sucked into 
compressors; aluminum portable oxygen 
system fires 

Adiabatic Compression
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Ignition Sources of Major Fires
Source Percent of Accidents
Electrical 23
Smoking 18
Friction 10
Overheated Materials 8
Hot Surfaces 7
Burner Flames 7
…
Cutting, Welding, Mech. Sparks 6

…
Static Sparks 1
All Other 20
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More Definitions
! Fire

– A slow form of deflagration

! Deflagration
– Propagating reactions in which the energy transfer 

from the reaction zone to the unreacted zone is 
accomplished thru ordinary transport processes 
such as heat and mass transfer.

! Detonation / Explosion
– Propagating reactions in which energy is transferred 

from the reaction zone to the unreacted zone on a 
reactive shock wave. The velocity of the shock 
wave always exceeds sonic velocity in the reactant.
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Classification of Explosions

EXPLOSION = Rapid Equilibration of High Pressure 
Gas via Shock Wave

Physical Explosions Chemical Explosions

Propagating ReactionsUniform Reactions

Thermal 
Explosions

Deflagrations
(Normal 

Transport)

Detonations
(Shock Wave)
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Potential Energy

PRESSURE, psig TNT EQUIV.,  lbs. per ft3

10
100

1000
10000

0.001
0.02
1.42
6.53

TNT equivalent = 5 x 105 calories/lbm

Stored Volumes of Ideal Gas at 20° C
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Deflagration
! Combustion with flame speeds at non-

turbulent velocities of 0.5 - 1 m/sec.
! Pressures rise by heat balance in fixed 

volume with pressure ratio of about 10.
CH4 + 2 O2 =  CO2 + 2 H2O + 21000 BTU/lb
Initial Mols =  1 + 2/.21 = 10.52
Final Mols =  1 + 2 + 2(0.79/0.21) = 10.52
Initial Temp =  298oK
Final Temp =  2500oK
Pressure Ratio =  9.7
Initial Pressure =  1 bar (abs)
Final Pressure =  9.7 bar (abs)
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Detonation

! Highly turbulent combustion
! Very high flame speeds
! Extremely high pressures >>10 bars
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Pressure vs Time 
Characteristics
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CONSEQUENCES
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Bayway, NJ
H-Oil Incident 1970
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Two Special Cases

! Vapor Cloud Explosion

! Boiling Liquid /Expanding Vapor 
Explosion
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! An overpressure caused when a gas cloud 
detonates or deflagrates in open air rather than 
simply burns.
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What Happens to a Vapor Cloud?
! Cloud will spread from too rich, through flammable 

range to too lean.

! Edges start to burn through deflagration (steady state 
combustion).

! Cloud will disperse through natural convection.

! Flame velocity will increase with containment and 
turbulence.

! If velocity is high enough cloud will detonate.

! If cloud is small enough with little confinement it cannot 
explode.
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What Favors Hi Overpressures?
! Confinement

– Prevents escape, 
increases turbulence

! Cloud composition
– Unsaturated molecules 

– ‘all ethylene clouds 
explode’; low ignition 
energies; high flame 
speeds

! Good weather
– Stable atmospheres, 

low wind speeds

! Large Vapor Clouds

– Higher probability of 
finding ignition source; 
more likely to generate 
overpressure

! Source

– Flashing liquids; high 
pressures; large, low or 
downward facing leaks
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Impact of VCEs on People
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Wind Velocity

mph
Knock personnel down

Rupture eardrums

Damage lungs

Threshold fatalities
50% fatalities
99% fatalities

Effects
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Impact of VCEs on Facilities

0.5-to-1
1-to-2

2-to-3
3-to-4

5
7 

7-8 

Peak
Overpressure

psi 
Glass windows break
Common siding types fail:

- corrugated asbestos shatters
- corrugated steel panel joints fail
- wood siding blows in

Unreinforced concrete, cinder block walls fail
Self-framed steel panel buildings collapse
Oil storage tanks rupture
Utility poles snap
Loaded rail cars overturn
Unreinforced brick walls fail

Typical Damage
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Vapor Clouds and TNT
! World of explosives is dominated by TNT impact 

which is understood.

! Vapor clouds, by analysis of incidents, seem to 
respond like TNT if we can determine the 
equivalent TNT.

! 1 pound of TNT has a LHV of 1890 BTU/lb.

! 1 pound of hydrocarbon has a LHV of about 19000 
BTU/lb.

! A vapor cloud with a 10% efficiency will respond 
like a similar weight of TNT.
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Multi-Energy Models
! Experts plotted efficiency against vapor cloud 

size and … reached no effective conclusions. 
Efficiencies were between 0.1% and 50%

! Recent developments in science suggest too 
many unknowns for simple TNT model.

! Key variables to overpressure effect are:
– Quantity of combustant in explosion
– Congestion/confinement for escape of combustion 

products
– Number of serial explosions

! Multi-energy model is consistent with models 
and pilot explosions.



40/61

! The result of a vessel failure in a fire and 
release of a pressurized liquid rapidly into 
the fire

! A pressure wave, a fire ball, vessel 
fragments and burning liquid droplets are 
usually the result
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BLEVE

FUEL
SOURCE
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BLEVE Video Clip
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Distance Comparison
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DESIGN for PREVENTION
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Eliminate Ignition Sources

! Typical Control
– Spacing and Layout
– Spacing and Layout
– Work Procedures
– Work Procedures
– Sewer Design, Diking, 

Weed Control, 
Housekeeping

– Procedures

! Fire or Flames
– Furnaces and Boilers
– Flares
– Welding
– Sparks from Tools
– Spread from Other Areas jkdj 

dkdjfdk dkdfjdkkd jkfdkd fkd 
fjkd fjdkkf djkfdkf jkdkf dkf

– Matches and Lighters
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Eliminate Ignition Sources

! Hot Surfaces
– Hot Pipes and Equipment
– Automotive Equipment

! Typical Control
– Area Classification
– Grounding, Inerting, 

Relaxation
– Geometry, Snuffing
– Procedures

! Electrical
– Sparks from Switches
– Static Sparks jkfdkd fjkdjd 

kdjfdkd
– Lightning
– Handheld Electrical 

Equipment

! Typical Control
– Spacing
– Procedures
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Inerting – Vacuum Purging
! Most common procedure for inerting 

reactors
! Steps

1. Draw a vacuum
2. Relieve the vacuum with an inert gas
3. Repeat Steps 1 and 2 until the desired oxidant 

level is reached
! Oxidant Concentration after j cycles:

where PL is vacuum level
PH is inert pressure

j
P
P

oyjy
H
L )(=
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Inerting – Pressure Purging
! Most common procedure for inerting 

reactors
! Steps

1. Add inert gas under pressure
2. Vent down to atmospheric pressure
3. Repeat Steps 1 and 2 until the desired oxidant 

level is reached
! Oxidant Concentration after j cycles:

where nL is atmospheric moles
nH is pressure moles

j
n
n

oyjy H
L )(=
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Vacuum? Pressure? Which?
! Pressure purging is faster because 

pressure differentials are greater (+PP)

! Vacuum purging uses less inert gas than 
pressure purging (+VP)

! Combining the two gains benefits of both 
especially if the initial cycle is a vacuum 
cycle (+ VP&PP)
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Other Methods of Inerting
! Sweep-Through Purging

– ‘In one end, and out the other’
– For equipment not rated for pressure, vacuum
– Requires large quantities of inert gas

! Siphon Purging
– Fill vessel with a compatible liquid
– Use Sweep-Through on small vapor space
– Add inert purge gas as vessel is drained
– Very efficient for large storage vessels
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1 Atmos.
25°C

FLAMMABLE
MIXTURES

Using the 
Flammability
Diagram
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Static Electricity
! Sparks resulting from static charge buildup

(involving at least one poor conductor) and sudden 
discharge

! Household Example: walking across a rug and 
grabbing a door knob

! Industrial Example: Pumping nonconductive liquid 
through a pipe then subsequent grounding of the 
container

Dangerous energy near flammable vapors 0.1 mJ
Static buildup by walking across carpet 20 mJ
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Double-Layer Charging
! Streaming Current

– The flow of electricity produced by transferring 
electrons from one surface to another by a 
flowing fluid or solid

– The larger the pipe / the faster the flow, the 
larger the current

! Relaxation Time
– The time for a charge to dissipate by leakage
– The lower the conductivity / the higher the 

dielectric constant, the longer the time
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Controlling
Static Electricity
! Reduce rate of charge generation

– Reduce flow rates

! Increase the rate of charge relaxation
– Relaxation tanks after filters, enlarged section of 

pipe before entering tanks

! Use bonding and grounding to prevent 
discharge
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Controlling
Static Electricity

GROUNDING

BONDING
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Static Electricity – Real Life
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Explosion Proof Equipment

! All electrical devices are inherent ignition 
sources

! If flammable materials might be present at 
times in an area, it is designated XP 
(Explosion Proof Required)

! Explosion-proof housing (or intrinsically-safe 
equipment) is required
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Area Classification
! National 

Electrical 
Code (NEC) 
defines area 
classifications 
as a function 
of the nature 
and degree of 
process 
hazards 
present

Class I Flammable gases/vapors present

Class II Combustible dusts present

Class III Combustible dusts present but 
not likely in suspension

Group A Acetylene

Group B Hydrogen, ethylene

Group C CO, H2S

Group D Butane, ethane

Division 1 Flammable concentrations 
normally present

Division 2 Flammable materials are 
normally in closed systems



59/61

VENTILATION

! Open-Air Plants
– Average wind velocities are often high enough to 

safely dilute volatile chemical leaks

! Plants Inside Buildings
– Local ventilation

" Purge boxes
" ‘Elephant trunks’

– Dilution ventilation (³ 1 ft3/min/ft2 of floor area)
" When many small points of possible leaks exist
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Summary

! Though they can often be reduced in 
magnitude or even sometimes 
designed out, many of the hazards 
that can lead to fires/explosions are 
unavoidable

! Eliminating at least one side of the 
Fire Triangle represents the best 
chance for avoiding fires and 
explosions
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END of PRESENTATION


